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Abstract
Reinforcement learning is unreasonably sample
inefficient in many real-world visual domains,
which require relatively simple control behav-
iors but pose challenging perception problems.
We show that even simple visual noise added to
common reinforcement learning benchmark envi-
ronments can significantly degrade learning effi-
ciency and break common approaches such as the
use of autoencoders. We propose new methods for
learning task-relevant state representations, and
show that they can discover image embeddings
that are significantly more effective when robust
perception is required.

1. Introduction
Agents that behave in realistic environments must deal with
a wide range of environmental conditions, including vary-
ing illumination, weather, and transient occlusions. Dealing
robustly with these conditions requires robust perception,
which many Reinforcement Learning (RL) algorithms at-
tempt to learn end-to-end as part of their training process.
Due to the relative sample inefficiency of RL compared to
supervised approaches, it has not been practical to use RL to
train the types of deep convolutional networks that achieve
state-of-the-art visual recognition results. While modern
vision networks may have hundreds of layers dedicated to
learning an underlying representation of the image, typical
convolutional models used in RL, e.g., for Atari (Mnih et al.,
2015), are more than an order of magnitude smaller.

As a result, alternatives to end-to-end training are sought
that can tackle complex visual tasks. Researchers commonly
employ supervised imitation learning, auxiliary tasks, data
augmentation, heuristic preprocessors, or modular pipelines
to make learning tractable. Without these steps, RL perfor-
mance on visual tasks can be quite poor, with agents trained
via state-of-the art algorithms often failing to drive down
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straight roads in photorealistic car simulators (Dosovitskiy
et al., 2017), even after millions of timesteps of training,
and when evaluated on the same scenario used for training.

Modular pipelines that leverage embedding models trained
with supervised losses (e.g., to segment and label image
regions) have been used to address the perception problem
(Paden et al., 2016; López et al., 2017). However, in the
absence of well-defined domain losses (e.g, scene segmen-
tation) and labeled observation data, it is not always clear
what supervised losses to use. Many domain-independent
auxiliary or self-supervised losses such as inverse dynamics
or frame prediction (Pathak et al., 2017b; Shelhamer et al.,
2016; Ha & Schmidhuber, 2018; Jaderberg et al., 2017) help
accelerate representation learning in RL, but we show that
these approaches fail to learn robust state representations.

In this paper, we explore the problem of learning a complete
state representation using task-relevant supervised losses.
We propose two complementary methods using two domain-
independent losses. First, we train a model to predict the out-
comes of short policy options, learning a PSR-like embed-
ding (Littman & Sutton, 2002) that transfers to the original
action space. To capture longer-term task dependencies, this
loss can be augmented with a forward-prediction loss in the
embedded space. Second, we leverage the self-supervision
built into deep image autoencoders by adversarially train-
ing a pair of autoencoders to separate task-relevant features
from environmental noise. We show that these embeddings
can be used directly with RL algorithms and improve per-
formance over previously proposed embeddings.

Our modeling assumptions are as follows:

1. The environment is simple to solve given the latent state
representation. This is relatively common in more com-
plex environments, for example, the test scenarios in the
Carla driving simulator (Dosovitskiy et al., 2017) can be
solved with very coarse (discrete) vehicular inputs, yet
popular RL agents perform very poorly.

2. Observations are perceptually complex, but most of the
observation signal is irrelevant for the task at hand. Out-
side of laboratory environments, details such as illumi-
nation, shadows, and distractor objects (e.g., vegetation,
clouds, skyscrapers) are commonly present yet uninfor-
mative for valuable behavior.
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3. We focus on the fully observable state setting and assume
that a short sequence of observations (e.g., the last 4
frames) is sufficient to recover any hidden state. While
in principle the techniques described in this paper could
be applied to the partially observable setting, we leave
that for future work.

1.1. Requirements for a Robust Embedding

An ideal state embedding robustly handles perception and
separates clutter from essential state signal for the given con-
trol task. A key challenge is to preserve sufficient relevant
information from the observation for the agent to complete
its task. For good sample efficiency, the embedding should
also be policy independent. Finally, the embedding should
be compact and resistant to irrelevant observational features,
including environmental noise that has dynamics of its own.

We examine limitations of three common self-supervised
losses used for representation learning in RL:

Autoencoders: Deep autoencoders consist of an image en-
coder that produces a latent representation, followed by a
decoder that seeks to reconstruct the image from the rep-
resentation. The encoder and decoder are jointly trained
by minimizing the L2 loss between the original and recon-
structed images. While autoencoders have proven effective
in visually complex RL tasks (Ha & Schmidhuber, 2018), as
we show in Section 3 they are easily distracted by structured
observational noise.

Forward dynamics model: Forward dynamics models
have been used effectively for model-based RL (Zhang
et al., 2017; Pathak et al., 2017b; Ha & Schmidhuber, 2018).
When operating in visual domains, they can be implemented
as one-step autoencoders. In contrast to per-frame auto-
encoders, forward dynamics autoencoders are able to ex-
tract state information needed to predict the environment
dynamics. Although robust to stationary noise (e.g., pixel
noise), dynamics models are susceptible to structured noise
(e.g., moving visual clutter) that follows the physics of the
environment but has no impact on the control problem.

Inverse dynamics model: Inverse dynamics models seek
to predict the action taken between two consecutive obser-
vations in a trajectory. The inverse dynamics loss has been
used effectively in a variety of RL algorithms, e.g., for learn-
ing a physical model in a latent space (Pathak et al., 2017b),
and for exploration (Pathak et al., 2017a). While an inverse
dynamics model naturally captures only aspects of the obser-
vation that are controllable by the agent, it can fail to capture
important aspects of the state for planning. For example,
in the vehicular setting the difference in pose between two
observations may be sufficient to completely capture the
dynamics of the vehicle, but would omit important aspects
of the environment such as upcoming obstacles.

2. Task-Relevant Embeddings
Truncated return prediction: We propose an alternative
loss for representation learning based on predicting the trun-
cated outcome of policy options (Sutton et al., 1999) taken
by the agent. Predicting the outcome of options instead
of the current policy makes the learned embedding policy-
independent, yet relevant to the task. A distribution over
truncation levels serves as data augmentation, extracting
more supervisory signal from the training data.

A value function Vπ(s) predicts discounted future reward
for a policy π from a state s. However, π changes as the
policy is trained. We instead try to learn a more general
function V̄ (π, s, k), where π is a policy and k is the horizon
after which rewards are truncated. Since it is infeasible to
parameterize V by π, we approximate this by replacing π
with a finite set of M policy options. As the policy space
becomes more densely covered by these options, V̄ (h, s, k)
better approximates V̄ (π, s, k) for any π.

From the returns (i.e., rewards) of these options, we learn a
latent state representation φ(ot) predictive of task-relevant
outcomes. Given a sequence of observations ot...ot+k−1,
the option index ht, rewards rt...rt+k−1, a regressor fψ,
and an optional preprocessor g for extracting extra ground
truth statistics from the trace, the loss for φθ is as follows:

Lpred(fψ(φθ(ot), ht), rt...rt+k−1||g(ot...ot+k−1)) (1)

Such a representation φ(ot) would act as a predictive state
representation (PSR) (Littman & Sutton, 2002) if the returns
were sufficient statistics for the task at hand. While the re-
turns alone may not be sufficient to learn a PSR in many
cases, other sources of signal can also provide supervision
through g. For example, in vehicular simulators, ground
truth pose and object proximity information is readily avail-
able, and indeed is often used for reward shaping.

Long-term dependencies: It is necessary for the embed-
ding to encode features relevant to long-term outcomes, even
with a finite truncation horizon. This can be addressed by
adding a loss predicting the successor embedding φθ(ot+k)
after k steps of an option h (Figure 1). We can predict the
successor state directly, similarly to using a forward dynam-
ics model, without learning a full successor representation
(Dayan, 1993). To stabilize training while φθ is changing
rapidly, the successor is fitted against a periodically updated
target embedding φθtarget

, as in DQN (Mnih et al., 2015).

Task-aware autoencoder: We also explore leveraging a
predictive loss to improve the effectiveness of visual au-
toencoders. As shown in Section 3, autoencoders work
very well in the absence of visual noise, but poorly other-
wise, suggesting a hybrid strategy may yield gains. This
can be done by training a pair of autoencoders (Figure 2)
that learns to model and, more importantly, separate task-
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Figure 1. Options h1...h5 for CarRacing. In truncated return pre-
diction, we learn an embedding φ(ot) that can predict the returns
of each option, which is a surrogate objective for being able to
predict the value of any policy. Given ht, it is also desirable for
φ(ot) to be predictive of the successor embedding φ(ot+k).

relevant and task-irrelevant image features. By explicitly
modeling the visual clutter in the image (e.g., the falling
”snow” in the background of Figure 3), we are able to better
separate and extract the task-relevant features. To force the
specialization of each auto-encoder, we penalize the sec-
ondary auto-encoder for producing state representations that
are predictive of future returns. We follow an approach in-
spired by GANs (Goodfellow et al., 2014) and predictability
minimization (Schmidhuber, 1992).

We define the losses as follows, where (φθ, φ−1
ψ1

) and (φθ2 ,
φ−1
ψ2

) are the encoder-decoder pairs for the primary and
secondary autoencoder respectively, as illustrated in Fig-
ure 2. The regressor fψ3

implements the truncated return
prediction loss for φθ, and fψadv

is an adversarial regres-
sor that encourages the secondary autoencoder to model
only task-irrelevant features. During training, we minimize
αLauto +Lpred−Lnoise while holding ψadv constant, and
concurrently train ψadv using Lnoise to improve the ad-
versarial regressor. Here α = 0.01 is a hyperparameter
interpolating between the autoencoder and regressor losses.
The encoder outputs are fused via a combining function c
(e.g., pixel-wise max), and then compared against the input:

Lauto(c(φ
−1
ψ1

(φθ(ot)), φ
−1
ψ2

(φθ2(ot))), ot+1) (2)

Lpred(fψ3
(φθ(ot), ht), ri...rt+k−1) (3)

Lnoise(fψadv
(φ−1
ψ2

(φθ2(ot, ht))), ri...rt+k−1) (4)

3. Evaluation
We evaluate the proposed embeddings in comparison to
autoencoder, inverse dynamics, and forward dynamics base-
lines, as well as training on the raw image. To simulate a
complex visual environment where perception is the learn-
ing bottleneck, we add visual noise to image versions of
Gym environments (Brockman et al., 2016) (Figure 3). To
more directly measure the robustness of the embedding, we
use the learned encoder φ as an image preprocessor (i.e.,
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Figure 2. Combining truncated return prediction with a task-aware
autoencoder that predicts the next frame. Green boxes highlight
the embedding we want to learn. The primary autoencoder’s em-
bedding is trained to predict truncated returns as well as produce a
part of the final image. A secondary high-bandwidth autoencoder’s
output is combined with that of the primary to reconstruct the orig-
inal image. An adversarial loss from a separately trained regressor
prevents the secondary autoencoder from including task-relevant
features. We used convolutional layers from the Atari architec-
ture (Mnih et al., 2015). Regressors are implemented by a single
64-unit ReLU hidden layer followed by a linear layer.

the RL agent never sees the original observation). We leave
optimizations such as fine-tuning φ via RL or using it to su-
pervise an auxiliary task to future work. We use TensorFlow
(Abadi et al., 2016) to train the neural networks.

(a) Image cartpole (b) CarRacing-v0

Figure 3. Sample observations for image cartpole and CarRacing-
v0. We introduce white noise and structured noise to increase the
difficulty of the perception component of the task. Structured noise
has dynamics of its own (e.g., here behaving like falling ”snow”).

Pretraining procedure: For our experiments, we use a
dataset of option traces gathered upfront for all preprocessor
training. We gather this data with a ”bootstrap agent” that
can adequately explore the environment (but not necessarily
achieve the highest reward). The bootstrap agent is peri-
odically interrupted to execute a random option h. In the
online training scenario, bootstrapping can be replaced by
alternating training of the agent and φ.

We perform minibatch SGD over the option traces with a
batch size of 128, withholding 2% of the original dataset to
serve as validation data. For the subsequent RL training, we
pick the weights for φ that minimize validation loss.

For all experiments we use the Atari convolutional archi-
tecture (Mnih et al., 2015). When feature vectors are con-
catenated, they are postprocessed by a single 64-unit ReLU
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(a) Image cartpole with (i) no noise, (ii) pixel white noise, (iii) and structured noise (”snow”).
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(b) Car racing, structured noise.

Figure 4. As perception becomes more difficult, task-relevant embeddings outperform autoencoders, forward and inverse dynamics
embeddings, and training on the raw image. Forward dynamics autoencoders learn to ignore white noise (ii), but completely fail to learn a
useful embedding in the presence of structured noise (iii). Inverse dynamics embeddings fail to capture all relevant features (iii, b).

hidden layer. All embeddings consist of 32 float32 units.
When training on the embedded image, two 256-unit ReLU
hidden layers are used for the policy. We use a proximal vari-
ant of policy gradient (Schulman et al., 2017) for training
cartpole, and A3C (Mnih et al., 2016) for car racing.

Image cartpole: We evaluate the proposed embeddings on
an image variant of the toy CartPole-v0 control environment
(Brockman et al., 2016). We define two options, h1 and
h2, which repeat moving the cart left and right respectively,
and gather 200k timesteps of option traces. To capture hid-
den state, the last 4 observations are framestacked prior to
feeding to φ. We use truncation levels k ∈ {1, 2, 3, ..., 10}
for truncated return prediction. In Figure 4 we evaluate
learning performance as increasingly complex visual noise
is added to the environment. While training on the raw
image works well in the absence of noise, even simple
white noise degrades sample efficiency precipitously (not
matching the embedding methods even after millions of
timesteps), and structured noise causes learning to flatline
entirely. Commonly used auxiliary losses such as inverse
dynamics also struggle as they inherently cannot capture all
relevant task features. In contrast, the task-relevant embed-
dings retain most of their performance even under heavy
noise. In addition, the task-aware autoencoder produces the
only embedding that leads to fully solving the task.

Car racing: We define h1 . . . h5 as shown in Figure 1, use
a framestack of 4, gather 1.5 million timesteps of option
traces, and pretrain the embedding with truncation levels
k ∈ {1, 4, 7, ..., 31}. Figure 4(b) shows that truncated re-
turn prediction outperforms other embeddings and also use
of the raw image when there is noise. In the absence of
noise, it improves to ∼200 reward, and a standard autoen-
coder from < 0 to ∼500. Note that none of the embeddings
enable solving the task (900+ reward). A reward of 100-200
corresponds to successfully making a few turns before get-
ting ”stuck” off-road. We hypothesize this is due to missing
long-horizon features in the embedding, which could be
addressed with successor embedding prediction (Section 2).

Table 1. Comparison of the effectiveness of embeddings at cross-
modeling objectives. In each column we show the ratio of the
achieved loss with a particular embedding to the best loss achieved
by any embedding in the column. The task-aware autoencoder
achieves close to the best loss for all objectives in image cartpole.

AE Loss IVD Loss TRP Loss

Task-aware AE 1× 1× 1.05×
Trunc. Ret. P. 8.3× 1.02× 1×
Inv. Dyn. 8.3× 1.07× 1.5×
AE (1-step) 2.2× 1.47× 3.8×

Task-aware autoencoder: To better understand the perfor-
mance of the task-aware autoencoder, in Table 1 we compare
its effectiveness at objective cross-modeling. To measure
this, we trained a multi-headed network with all losses, but
gated the gradient to the embedding from all but one of
the losses. The task-aware autoencoder achieves the best
reconstruction loss due to its secondary autoencoder and
nearly matches the best return prediction loss, indicating
that some representational capacity was used for modeling
the pole angle in lieu of pure return prediction. Interestingly,
it also achieves the lowest inverse dynamics loss, despite
not being optimized for that objective in particular.

Figure 2 shows the task-aware autoencoder can precisely
predict the next cartpole frame from framestacked input.
This is in contrast to standard autoencoders that only pro-
duce a blurry reconstruction of the pole or emit it entirely.

4. Future work
We plan to continue evaluating and improving the robust-
ness of embeddings, tackling more complex photorealistic
visual environments (e.g., Carla), and those with sparser
rewards (e.g., Atari). Another natural question is how to
best leverage automatic option extraction techniques for
truncated return prediction. We are also investigating why
the task-aware autoencoder does not converge to a good
segmentation in the car racing environment. We expect this
to be challenging due to the instability of GAN training.



Task-Relevant Embeddings for Robust Perception in Reinforcement Learning

References
Abadi, Martin, Barham, Paul, Chen, Jianmin, Chen,

Zhifeng, Davis, Andy, Dean, Jeffrey, Devin, Matthieu,
Ghemawat, Sanjay, Irving, Geoffrey, Isard, Michael,
Kudlur, Manjunath, Levenberg, Josh, Monga, Rajat,
Moore, Sherry, Murray, Derek G., Steiner, Benoit,
Tucker, Paul, Vasudevan, Vijay, Warden, Pete, Wicke,
Martin, Yu, Yuan, and Zheng, Xiaoqiang. Tensorflow:
A system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pp. 265–283, 2016. URL
https://www.usenix.org/system/files/
conference/osdi16/osdi16-abadi.pdf.

Brockman, Greg, Cheung, Vicki, Pettersson, Lud-
wig, Schneider, Jonas, Schulman, John, Tang, Jie,
and Zaremba, Wojciech. OpenAI Gym. CoRR,
abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Dayan, Peter. Improving generalization for temporal dif-
ference learning: The successor representation. Neural
Computation, 5(4):613–624, 1993.

Dosovitskiy, Alexey, Ros, Germán, Codevilla, Felipe,
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